Mass Transfer Kinetics of Volatile Organic Compound Desorption from a Novel Adsorbent
The adsorption isotherms and intraparticle mass transfer coefficients of a novel adsorbent with various VOCs at different temperatures during the desorption process are investigated. Firstly, the adsorption isotherms of an HCP-5 adsorbent with o-xylene and ethyl acetate systems were determined at te...
Gespeichert in:
Veröffentlicht in: | Processes 2024-09, Vol.12 (9), p.2031 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The adsorption isotherms and intraparticle mass transfer coefficients of a novel adsorbent with various VOCs at different temperatures during the desorption process are investigated. Firstly, the adsorption isotherms of an HCP-5 adsorbent with o-xylene and ethyl acetate systems were determined at temperatures ranging from 30 to 160 °C, and the data were fitted using the Langmuir adsorption isotherm equation. Subsequently, a mathematical model for the fixed-bed desorption breakthrough of VOCs was established. By combining with fixed-bed desorption breakthrough experiments, the intraparticle mass transfer coefficients of o-xylene and ethyl acetate during the desorption process at different temperatures were obtained through the least squares method. This study revealed that the intraparticle mass transfer coefficients of o-xylene and ethyl acetate during the desorption process were basically equal. The intraparticle mass transfer coefficients increased and then decreased with temperature during the desorption process. Compared with the adsorption process, the contribution of surface diffusion inside the adsorbent pores to intraparticle mass transfer decreased during the desorption process, leading to a significant decrease in the intraparticle mass transfer coefficients, which were approximately one-twentieth of those during the adsorption process. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr12092031 |