Phase Equilibria Study of the MgO–CaO–SiO2 Slag System with Ferronickel Alloy, Solid Carbon, and Al2O3 Additions
Knowledge of the phase equilibria in the MgO–CaO–SiO2–Al2O3 slag system is crucial for the nickel laterite smelting process. The phase equilibria of this slag system were experimentally investigated, focusing on the olivine and tridymite/cristobalite primary phase fields, using high-temperature equi...
Gespeichert in:
Veröffentlicht in: | Processes 2024-09, Vol.12 (9), p.1946 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Knowledge of the phase equilibria in the MgO–CaO–SiO2–Al2O3 slag system is crucial for the nickel laterite smelting process. The phase equilibria of this slag system were experimentally investigated, focusing on the olivine and tridymite/cristobalite primary phase fields, using high-temperature equilibration and quenching methods, followed by Scanning Electron Microscopy–Energy Dispersive X-Ray analysis. The phase equilibria of the MgO–CaO–SiO2 slag system at 1400 °C and 1500 °C were first determined in the absence of ferronickel alloy. The phase equilibria between 1400 °C, 1450 °C, and 1500 °C were then determined under a reducing condition, i.e., at equilibrium with ferronickel alloy and solid carbon. Finally, the effect of Al2O3 addition on the liquidus and solidus compositions in the slag system under the reducing condition was investigated at 1400 °C and 1450 °C. Comparisons between the experimentally constructed diagram, previous data, and FactSage-predicted phase diagrams have been provided and discussed. The present study identified the liquid slag both in the absence and presence of ferronickel alloy and solid carbon, as well as in the presence of Al2O3 impurity, within the formation boundaries of olivine and tridymite/cristobalite solids. Identifying the liquid slag area is essential to ensure that the nickel laterite smelting slag can be tapped from the furnace. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr12091946 |