An Enhanced K-Means Clustering Algorithm for Phishing Attack Detections

Phishing attacks continue to pose a significant threat to cybersecurity, employing increasingly sophisticated techniques to deceive victims into revealing sensitive information or downloading malware. This paper presents a comprehensive study on the application of Machine Learning (ML) techniques fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-09, Vol.13 (18), p.3677
Hauptverfasser: Al-Sabbagh, Abdallah, Hamze, Khalil, Khan, Samiya, Elkhodr, Mahmoud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phishing attacks continue to pose a significant threat to cybersecurity, employing increasingly sophisticated techniques to deceive victims into revealing sensitive information or downloading malware. This paper presents a comprehensive study on the application of Machine Learning (ML) techniques for identifying phishing websites, with a focus on enhancing detection accuracy and efficiency. We propose an approach that integrates the CfsSubsetEval attribute evaluator with the K-Means Clustering algorithm to improve phishing detection capabilities. Our method was evaluated using datasets of varying sizes (2000, 7000, and 10,000 samples) from a publicly available repository. Simulation results demonstrate that our approach achieves an accuracy of 89.2% on the 2000-sample dataset, outperforming the traditional kernel K-Means algorithm, which achieved an accuracy of 51.5%. Further analysis using precision, recall, and F1-score metrics corroborates the effectiveness of our method. We also discuss the scalability and real-world applicability of our approach, addressing limitations and proposing future research directions. This study contributes to the ongoing efforts to develop robust, efficient, and adaptable phishing detection systems in the face of evolving cyber threats.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13183677