Stability of the Magnetic Subsystem of 2D Magnets within the Crystal Orbital Hamilton Population Method
The densities of electronic states in quasi-two-dimensional vanadium nitrides have been studied using density functional theory and the method of the crystal orbital Hamilton population. The contribution of various orbital pairs and their influence on the stability of the magnetic subsystem of these...
Gespeichert in:
Veröffentlicht in: | Surface investigation, x-ray, synchrotron and neutron techniques x-ray, synchrotron and neutron techniques, 2024-08, Vol.18 (4), p.859-863 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The densities of electronic states in quasi-two-dimensional vanadium nitrides have been studied using density functional theory and the method of the crystal orbital Hamilton population. The contribution of various orbital pairs and their influence on the stability of the magnetic subsystem of these compounds have been analyzed using the crystal orbital Hamilton population (COHP) algorithm. The calculation results and their analysis suggest that the formation of long-range magnetic order plays a role in the structural stabilization of magnetic quasi-two-dimensional transition metal nitrides. Comparing COHP curves for different vanadium nitrides shows that the nitrogen stoichiometry in V
x
N
y
compounds affects the electronic properties and the nature of the chemical bond during the transition to the ferromagnetic state. Calculation data and total energies prove the structure-stabilizing effect of long-range magnetic ordering in quasi-two-dimensional vanadium–nitrogen compounds. |
---|---|
ISSN: | 1027-4510 1819-7094 |
DOI: | 10.1134/S1027451024700563 |