Tykhyy's Conjecture on finite mapping class group orbits
We classify the finite orbits of the mapping class group action on the character variety of Deroin--Tholozan representations of punctured spheres. In particular, we prove that the action has no finite orbits if the underlying sphere has 7 punctures or more. When the sphere has six punctures, we show...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We classify the finite orbits of the mapping class group action on the character variety of Deroin--Tholozan representations of punctured spheres. In particular, we prove that the action has no finite orbits if the underlying sphere has 7 punctures or more. When the sphere has six punctures, we show that there is a unique 1-parameter family of finite orbits. Our methods also recover Tykhyy's classification of finite orbits for 5-punctured spheres. The proof is inductive and uses Lisovyy--Tykhyy's classification of finite mapping class group orbits for 4-punctured spheres as the base case for the induction. Our results on Deroin--Tholozan representations cover the last missing cases to complete the proof of Tykhyy's Conjecture on finite mapping class group orbits for \(\mathrm{SL}_2\mathbb{C}\) representations of punctured spheres, after the recent work by Lam--Landesman--Litt. |
---|---|
ISSN: | 2331-8422 |