Tykhyy's Conjecture on finite mapping class group orbits

We classify the finite orbits of the mapping class group action on the character variety of Deroin--Tholozan representations of punctured spheres. In particular, we prove that the action has no finite orbits if the underlying sphere has 7 punctures or more. When the sphere has six punctures, we show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Bronstein, Samuel, Maret, Arnaud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We classify the finite orbits of the mapping class group action on the character variety of Deroin--Tholozan representations of punctured spheres. In particular, we prove that the action has no finite orbits if the underlying sphere has 7 punctures or more. When the sphere has six punctures, we show that there is a unique 1-parameter family of finite orbits. Our methods also recover Tykhyy's classification of finite orbits for 5-punctured spheres. The proof is inductive and uses Lisovyy--Tykhyy's classification of finite mapping class group orbits for 4-punctured spheres as the base case for the induction. Our results on Deroin--Tholozan representations cover the last missing cases to complete the proof of Tykhyy's Conjecture on finite mapping class group orbits for \(\mathrm{SL}_2\mathbb{C}\) representations of punctured spheres, after the recent work by Lam--Landesman--Litt.
ISSN:2331-8422