A size-consistent Grüneisen-quasiharmonic approach for lattice thermal conductivity

We propose a size-consistent Grüneisen-quasiharmonic approach (GQA) to calculate the lattice thermal conductivity where the Grüneisen parameters that measure the degree of phonon anharmonicity are calculated directly using first-principles calculations. This is achieved by identifying and modifying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2022-10, Vol.140 (2), p.26006
Hauptverfasser: Gan, Chee Kwan, Koh, Eng Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a size-consistent Grüneisen-quasiharmonic approach (GQA) to calculate the lattice thermal conductivity where the Grüneisen parameters that measure the degree of phonon anharmonicity are calculated directly using first-principles calculations. This is achieved by identifying and modifying two existing equations related to the Slack formulae for that suffer from the size-inconsistency problem when dealing with non-monoatomic primitive cells (where the number of atoms in the primitive cell n is greater than one). In conjunction with other thermal parameters such as the acoustic Debye temperature that can also be obtained within the GQA, we predict for a range of materials taken from the diamond, zincblende, rocksalt, and wurtzite compounds. The results are compared with that from the experiment and the quasiharmonic Debye model (QDM). We find that in general the prediction of is rather consistent among the GQA, experiment, and QDM. However, while the QDM somewhat overestimates the Grüneisen parameters and hence underestimates for most materials, the GQA predicts the experimental trends of Grüneisen parameters and more closely. We expect the GQA with the modified Slack formulae could be used as an effective and practical predictor for , especially for crystals with large n .
ISSN:0295-5075
1286-4854
DOI:10.1209/0295-5075/ac9c27