Noncommutative gravity and the relevance of the θ-constant deformation
The breaking of diffeomorphism invariance in the Moyal-Weyl (θ-constant) noncommutative (NC) space-time is a well-known and a long-standing problem. It makes the construction of NC gravity models and interpretation of their results very difficult. In order to solve this problem in this letter we con...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2017-04, Vol.118 (2), p.21002, Article 21002 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The breaking of diffeomorphism invariance in the Moyal-Weyl (θ-constant) noncommutative (NC) space-time is a well-known and a long-standing problem. It makes the construction of NC gravity models and interpretation of their results very difficult. In order to solve this problem in this letter we construct a NC gravity action based on the NC gauge group and the Seiberg-Witten expansion. The NC equations of motion show that the noncommutativity plays the role of a source for the curvature and/or torsion. Finally, we calculate the NC corrections to the Minkowski space-time and show that in the presence of noncommutativity the Minkowski space-time becomes curved, but remains torsion-free. More importantly, we show that the coordinate system we are using is given by the Fermi normal coordinates; the NC deformation is constant in this particular reference system. The breaking of diffeomorphism invariance is understood as a consequence of working in a preferred reference system. In an arbitrary reference system, the NC deformation is obtained by an appropriate coordinate transformation. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/118/21002 |