The Crossing Tverberg Theorem

The Tverberg theorem is one of the cornerstones of discrete geometry. It states that, given a set X of at least ( d + 1 ) ( r - 1 ) + 1 points in  R d , one can find a partition X = X 1 ∪ ⋯ ∪ X r of  X , such that the convex hulls of the  X i , i = 1 , … , r , all share a common point. In this paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2024-09, Vol.72 (2), p.831-848
Hauptverfasser: Fulek, Radoslav, Gärtner, Bernd, Kupavskii, Andrey, Valtr, Pavel, Wagner, Uli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Tverberg theorem is one of the cornerstones of discrete geometry. It states that, given a set X of at least ( d + 1 ) ( r - 1 ) + 1 points in  R d , one can find a partition X = X 1 ∪ ⋯ ∪ X r of  X , such that the convex hulls of the  X i , i = 1 , … , r , all share a common point. In this paper, we prove a strengthening of this theorem that guarantees a partition which, in addition to the above, has the property that the boundaries of full-dimensional convex hulls have pairwise nonempty intersections. Possible generalizations and algorithmic aspects are also discussed. As a concrete application, we show that any n  points in the plane in general position span ⌊ n / 3 ⌋ vertex-disjoint triangles that are pairwise crossing, meaning that their boundaries have pairwise nonempty intersections; this number is clearly best possible. A previous result of Álvarez-Rebollar et al. guarantees ⌊ n / 6 ⌋ pairwise crossing triangles. Our result generalizes to a result about simplices in  R d , d ≥ 2 .
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-023-00532-x