Spatiotemporal Climatic Signal Denoising Based on Spatiotemporal Variability Index

Spatiotemporal (ST) climatic signals are used exclusively in the analysis and prediction of weather and climate. These signals are prone to noise due to sensor defects, environmental interference and so on. A novel ST signal denoising method is presented that computes ST signal variability measure a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2024, Vol.31, p.2480-2484
Hauptverfasser: Gavas, Rahul Dasharath, Ghosh, Soumya Kanti, Pal, Arpan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spatiotemporal (ST) climatic signals are used exclusively in the analysis and prediction of weather and climate. These signals are prone to noise due to sensor defects, environmental interference and so on. A novel ST signal denoising method is presented that computes ST signal variability measure at multiple data scales obtained from multivariate variational mode decomposition algorithm. This aids in joint multi-zonal climatic signal denoising directly in multidimensional space \mathbb {R}^{Z\times N} where input signal resides, with the usage of interval thresholding applied on multiple data scales in \mathbb {R}^{Z\times N}. The performance of the proposed method is assessed and compared against closely related state-of-the-art methods using qualitative and quantitative analysis.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2024.3438080