A 28-GHz Hybrid Beamforming Transmitter With Spatial Notch Steering Enabling Concurrent Dual Data Streams for 5G MIMO Applications
This article presents a new notch steering scheme for hybrid beamforming transmitters (TXs) aimed at suppressing spatial interference, thereby enhancing the signal-to-interference-plus-noise ratio (SINR) to support spatial multiplexing. Built upon existing phased arrays, this scheme integrates an au...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2024-10, Vol.59 (10), p.3378-3391 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents a new notch steering scheme for hybrid beamforming transmitters (TXs) aimed at suppressing spatial interference, thereby enhancing the signal-to-interference-plus-noise ratio (SINR) to support spatial multiplexing. Built upon existing phased arrays, this scheme integrates an auxiliary-path vector modulator (VM) into each antenna element, which in turn, forms an interference-canceling beam. By spatially combining the array factors (AFs) of the main beam and the interference-canceling beam, a deep spatial notch is created while ensuring minimal main-beam power degradation. Unlike the conventional zero-forcing method that requires matrix inversion in digital for spatial notch creation, our scheme enables the computation of antenna weights in analog, significantly reducing the computational cost and latency. Leveraging this new notch steering scheme, we develop a 28-GHz four-element fully connected (FC) hybrid beamforming TX array using the GlobalFoundries 45-nm CMOS Silicon-on-Insulator (SOI) process. It is capable of simultaneously transmitting two independent, wideband data streams (DSs) in the same polarization toward two directions. In probing-based measurements, each TX channel delivers 19.7-dBm OP1 dB, 20.4-dBm {P} {_{\text {SAT}}} , and 30.6% peak power-added efficiency (PAE) at 29 GHz, demonstrating state-of-the-art TX linearity and efficiency. In over-the-air (OTA) measurements, the packaged TX array achieves 29.8-dBm EIRP1 dB and is able to steer a spatial notch outside the −10-dB beamwidth of the main beam, with a notch depth of >35 dB and a main-beam power degradation of < 0.8 dB. Moreover, in spatial multiplexing demonstrations, the TX array is capable of transmitting a 400-MHz 64-quadrature amplitude modulation (QAM) signal to the intended receiver (RX) in the first DS, while suppressing the co-channel continuous-wave or wideband modulated interference created by the second DS with a high SINR. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2024.3399220 |