Sums of powers of primes II
For a real number k , define π k ( x ) = ∑ p ≤ x p k . When k > 0 , we prove that π k ( x ) - π ( x k + 1 ) = Ω ± x 1 2 + k log x log log log x as x → ∞ , and we prove a similar result when - 1 < k < 0 . This strengthens a result in a paper by Gerard and the author and it corrects a flaw in...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2024-10, Vol.65 (2), p.783-795 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a real number
k
, define
π
k
(
x
)
=
∑
p
≤
x
p
k
. When
k
>
0
, we prove that
π
k
(
x
)
-
π
(
x
k
+
1
)
=
Ω
±
x
1
2
+
k
log
x
log
log
log
x
as
x
→
∞
, and we prove a similar result when
-
1
<
k
<
0
. This strengthens a result in a paper by Gerard and the author and it corrects a flaw in a proof in that paper. We also quantify the observation from that paper that
π
k
(
x
)
-
π
(
x
k
+
1
)
is usually negative when
k
>
0
and usually positive when
-
1
<
k
<
0
. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-024-00917-3 |