Sums of powers of primes II

For a real number k , define π k ( x ) = ∑ p ≤ x p k . When k > 0 , we prove that π k ( x ) - π ( x k + 1 ) = Ω ± x 1 2 + k log x log log log x as x → ∞ , and we prove a similar result when - 1 < k < 0 . This strengthens a result in a paper by Gerard and the author and it corrects a flaw in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2024-10, Vol.65 (2), p.783-795
1. Verfasser: Washington, Lawrence C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a real number k , define π k ( x ) = ∑ p ≤ x p k . When k > 0 , we prove that π k ( x ) - π ( x k + 1 ) = Ω ± x 1 2 + k log x log log log x as x → ∞ , and we prove a similar result when - 1 < k < 0 . This strengthens a result in a paper by Gerard and the author and it corrects a flaw in a proof in that paper. We also quantify the observation from that paper that π k ( x ) - π ( x k + 1 ) is usually negative when k > 0 and usually positive when - 1 < k < 0 .
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-024-00917-3