An analogue of Kida’s formula for elliptic curves with additive reduction

We study the Iwasawa theory of p -primary Selmer groups of elliptic curves E over a number field K . Assume that E has additive reduction at the primes of K above p . In this context, we prove that the Iwasawa invariants satisfy an analogue of the Riemann–Hurwitz formula. This generalizes a result o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2024-10, Vol.65 (2), p.857-883
Hauptverfasser: Ray, Anwesh, Shingavekar, Pratiksha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 883
container_issue 2
container_start_page 857
container_title The Ramanujan journal
container_volume 65
creator Ray, Anwesh
Shingavekar, Pratiksha
description We study the Iwasawa theory of p -primary Selmer groups of elliptic curves E over a number field K . Assume that E has additive reduction at the primes of K above p . In this context, we prove that the Iwasawa invariants satisfy an analogue of the Riemann–Hurwitz formula. This generalizes a result of Hachimori and Matsuno. We apply our results to study rank stability questions for elliptic curves in prime cyclic extensions of Q . These extensions are ordered by their absolute discriminant and we prove an asymptotic lower bound for the density of extensions in which the Iwasawa invariants as well as the rank of the elliptic curve is stable.
doi_str_mv 10.1007/s11139-024-00920-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3109337537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109337537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-fece4b4c7472da0d364e2a8488c37269f7fc551f33d64ae09db44c5ec39685aa3</originalsourceid><addsrcrecordid>eNp9kEtOwzAURS0EEqWwAUaWGBueP4njYVXxE5WYwNhy_Smu0qTYSREztsH2WAkpQWLG6L7BPVd6B6FzCpcUQF5lSilXBJggAIoBqQ7QhBaSEcWBHw43rxgRoOAYneS8BgABXE7Qw6zBpjF1u-o9bgN-iM58fXxmHNq06WuzT-zrOm67aLHt085n_Ba7F2yci13ceZy8620X2-YUHQVTZ3_2m1P0fHP9NL8ji8fb-_lsQSwD6Ejw1oulsFJI5gw4XgrPTCWqynLJShVksEVBA-euFMaDckshbOEtV2VVGMOn6GLc3ab2tfe50-u2T8MTWXMKinNZcDm02Niyqc05-aC3KW5MetcU9F6aHqXpQZr-kaarAeIjlIdys_Lpb_of6huDPHAp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109337537</pqid></control><display><type>article</type><title>An analogue of Kida’s formula for elliptic curves with additive reduction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ray, Anwesh ; Shingavekar, Pratiksha</creator><creatorcontrib>Ray, Anwesh ; Shingavekar, Pratiksha</creatorcontrib><description>We study the Iwasawa theory of p -primary Selmer groups of elliptic curves E over a number field K . Assume that E has additive reduction at the primes of K above p . In this context, we prove that the Iwasawa invariants satisfy an analogue of the Riemann–Hurwitz formula. This generalizes a result of Hachimori and Matsuno. We apply our results to study rank stability questions for elliptic curves in prime cyclic extensions of Q . These extensions are ordered by their absolute discriminant and we prove an asymptotic lower bound for the density of extensions in which the Iwasawa invariants as well as the rank of the elliptic curve is stable.</description><identifier>ISSN: 1382-4090</identifier><identifier>EISSN: 1572-9303</identifier><identifier>DOI: 10.1007/s11139-024-00920-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Curves ; Field theory ; Field Theory and Polynomials ; Fourier Analysis ; Functions of a Complex Variable ; Invariants ; Lower bounds ; Mathematics ; Mathematics and Statistics ; Number Theory</subject><ispartof>The Ramanujan journal, 2024-10, Vol.65 (2), p.857-883</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-fece4b4c7472da0d364e2a8488c37269f7fc551f33d64ae09db44c5ec39685aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11139-024-00920-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11139-024-00920-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ray, Anwesh</creatorcontrib><creatorcontrib>Shingavekar, Pratiksha</creatorcontrib><title>An analogue of Kida’s formula for elliptic curves with additive reduction</title><title>The Ramanujan journal</title><addtitle>Ramanujan J</addtitle><description>We study the Iwasawa theory of p -primary Selmer groups of elliptic curves E over a number field K . Assume that E has additive reduction at the primes of K above p . In this context, we prove that the Iwasawa invariants satisfy an analogue of the Riemann–Hurwitz formula. This generalizes a result of Hachimori and Matsuno. We apply our results to study rank stability questions for elliptic curves in prime cyclic extensions of Q . These extensions are ordered by their absolute discriminant and we prove an asymptotic lower bound for the density of extensions in which the Iwasawa invariants as well as the rank of the elliptic curve is stable.</description><subject>Combinatorics</subject><subject>Curves</subject><subject>Field theory</subject><subject>Field Theory and Polynomials</subject><subject>Fourier Analysis</subject><subject>Functions of a Complex Variable</subject><subject>Invariants</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><issn>1382-4090</issn><issn>1572-9303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAURS0EEqWwAUaWGBueP4njYVXxE5WYwNhy_Smu0qTYSREztsH2WAkpQWLG6L7BPVd6B6FzCpcUQF5lSilXBJggAIoBqQ7QhBaSEcWBHw43rxgRoOAYneS8BgABXE7Qw6zBpjF1u-o9bgN-iM58fXxmHNq06WuzT-zrOm67aLHt085n_Ba7F2yci13ceZy8620X2-YUHQVTZ3_2m1P0fHP9NL8ji8fb-_lsQSwD6Ejw1oulsFJI5gw4XgrPTCWqynLJShVksEVBA-euFMaDckshbOEtV2VVGMOn6GLc3ab2tfe50-u2T8MTWXMKinNZcDm02Niyqc05-aC3KW5MetcU9F6aHqXpQZr-kaarAeIjlIdys_Lpb_of6huDPHAp</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Ray, Anwesh</creator><creator>Shingavekar, Pratiksha</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>An analogue of Kida’s formula for elliptic curves with additive reduction</title><author>Ray, Anwesh ; Shingavekar, Pratiksha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-fece4b4c7472da0d364e2a8488c37269f7fc551f33d64ae09db44c5ec39685aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorics</topic><topic>Curves</topic><topic>Field theory</topic><topic>Field Theory and Polynomials</topic><topic>Fourier Analysis</topic><topic>Functions of a Complex Variable</topic><topic>Invariants</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ray, Anwesh</creatorcontrib><creatorcontrib>Shingavekar, Pratiksha</creatorcontrib><collection>CrossRef</collection><jtitle>The Ramanujan journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ray, Anwesh</au><au>Shingavekar, Pratiksha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analogue of Kida’s formula for elliptic curves with additive reduction</atitle><jtitle>The Ramanujan journal</jtitle><stitle>Ramanujan J</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>65</volume><issue>2</issue><spage>857</spage><epage>883</epage><pages>857-883</pages><issn>1382-4090</issn><eissn>1572-9303</eissn><abstract>We study the Iwasawa theory of p -primary Selmer groups of elliptic curves E over a number field K . Assume that E has additive reduction at the primes of K above p . In this context, we prove that the Iwasawa invariants satisfy an analogue of the Riemann–Hurwitz formula. This generalizes a result of Hachimori and Matsuno. We apply our results to study rank stability questions for elliptic curves in prime cyclic extensions of Q . These extensions are ordered by their absolute discriminant and we prove an asymptotic lower bound for the density of extensions in which the Iwasawa invariants as well as the rank of the elliptic curve is stable.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11139-024-00920-8</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1382-4090
ispartof The Ramanujan journal, 2024-10, Vol.65 (2), p.857-883
issn 1382-4090
1572-9303
language eng
recordid cdi_proquest_journals_3109337537
source SpringerLink Journals - AutoHoldings
subjects Combinatorics
Curves
Field theory
Field Theory and Polynomials
Fourier Analysis
Functions of a Complex Variable
Invariants
Lower bounds
Mathematics
Mathematics and Statistics
Number Theory
title An analogue of Kida’s formula for elliptic curves with additive reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analogue%20of%20Kida%E2%80%99s%20formula%20for%20elliptic%20curves%20with%20additive%20reduction&rft.jtitle=The%20Ramanujan%20journal&rft.au=Ray,%20Anwesh&rft.date=2024-10-01&rft.volume=65&rft.issue=2&rft.spage=857&rft.epage=883&rft.pages=857-883&rft.issn=1382-4090&rft.eissn=1572-9303&rft_id=info:doi/10.1007/s11139-024-00920-8&rft_dat=%3Cproquest_cross%3E3109337537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109337537&rft_id=info:pmid/&rfr_iscdi=true