An analogue of Kida’s formula for elliptic curves with additive reduction
We study the Iwasawa theory of p -primary Selmer groups of elliptic curves E over a number field K . Assume that E has additive reduction at the primes of K above p . In this context, we prove that the Iwasawa invariants satisfy an analogue of the Riemann–Hurwitz formula. This generalizes a result o...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2024-10, Vol.65 (2), p.857-883 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Iwasawa theory of
p
-primary Selmer groups of elliptic curves
E
over a number field
K
. Assume that
E
has additive reduction at the primes of
K
above
p
. In this context, we prove that the Iwasawa invariants satisfy an analogue of the Riemann–Hurwitz formula. This generalizes a result of Hachimori and Matsuno. We apply our results to study rank stability questions for elliptic curves in prime cyclic extensions of
Q
. These extensions are ordered by their absolute discriminant and we prove an asymptotic lower bound for the density of extensions in which the Iwasawa invariants as well as the rank of the elliptic curve is stable. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-024-00920-8 |