An analogue of Kida’s formula for elliptic curves with additive reduction

We study the Iwasawa theory of p -primary Selmer groups of elliptic curves E over a number field K . Assume that E has additive reduction at the primes of K above p . In this context, we prove that the Iwasawa invariants satisfy an analogue of the Riemann–Hurwitz formula. This generalizes a result o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2024-10, Vol.65 (2), p.857-883
Hauptverfasser: Ray, Anwesh, Shingavekar, Pratiksha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the Iwasawa theory of p -primary Selmer groups of elliptic curves E over a number field K . Assume that E has additive reduction at the primes of K above p . In this context, we prove that the Iwasawa invariants satisfy an analogue of the Riemann–Hurwitz formula. This generalizes a result of Hachimori and Matsuno. We apply our results to study rank stability questions for elliptic curves in prime cyclic extensions of Q . These extensions are ordered by their absolute discriminant and we prove an asymptotic lower bound for the density of extensions in which the Iwasawa invariants as well as the rank of the elliptic curve is stable.
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-024-00920-8