Developing an urban thunderstorm climatology for the Bangkok Metropolitan Region

This investigation builds upon and extends prior lightning research in the Bangkok Metropolitan Region (BMR) through the reconstruction of thunderstorm distribution, utilizing a novel lightning tracking algorithm. Five years (2016–2020) of lightning stroke data from the Global Lightning Dataset (GLD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Singapore journal of tropical geography 2024-09, Vol.45 (3), p.498-514
Hauptverfasser: Sae‐Jung, Jojinda, Bentley, Mace L, Duan, Zhuojun, Szakal, Endre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This investigation builds upon and extends prior lightning research in the Bangkok Metropolitan Region (BMR) through the reconstruction of thunderstorm distribution, utilizing a novel lightning tracking algorithm. Five years (2016–2020) of lightning stroke data from the Global Lightning Dataset (GLD360) were used to identify 52 608 thunderstorms. Optimized hotspot analyses, track densities, and analyses of thunderstorms with respect to winds, landcover, and seasons were performed. Our findings suggest that significant modification of thunderstorm distribution within the region was due to urban landcover impacts on the local environment. Thunderstorm intensity, as measured by stroke counts and track length, also appeared to be sensitive to the urban environment. The thunderstorm distribution also highlighted areas prone to hazards such as flash flooding. By visualizing thunderstorms grouped by winds, thunderstorm initiation hotspots and track density corridors were identified. These corridors of augmented thunderstorm production tended to occur during specific months given the seasonal monsoon wind regime occurring across the BMR. As urbanization within the BMR continues, geospatial assessment of thunderstorms is important to inform forecast meteorologists, urban planners, government officials, and others who play a critical role in developing strategies, policies and insfrastructure that could mitigate thunderstorm impacts.
ISSN:0129-7619
1467-9493
DOI:10.1111/sjtg.12552