Interpreting Multi-band Galaxy Observations with Large Language Model-Based Agents

Astronomical research traditionally relies on extensive domain knowledge to interpret observations and narrow down hypotheses. We demonstrate that this process can be emulated using large language model-based agents to accelerate research workflows. We propose mephisto, a multi-agent collaboration f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Sun, Zechang, Yuan-Sen, Ting, Liang, Yaobo, Duan, Nan, Huang, Song, Cai, Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Astronomical research traditionally relies on extensive domain knowledge to interpret observations and narrow down hypotheses. We demonstrate that this process can be emulated using large language model-based agents to accelerate research workflows. We propose mephisto, a multi-agent collaboration framework that mimics human reasoning to interpret multi-band galaxy observations. mephisto interacts with the CIGALE codebase, which includes spectral energy distribution (SED) models to explain observations. In this open-world setting, mephisto learns from its self-play experience, performs tree search, and accumulates knowledge in a dynamically updated base. As a proof of concept, we apply mephisto to the latest data from the James Webb Space Telescope. mephisto attains near-human proficiency in reasoning about galaxies' physical scenarios, even when dealing with a recently discovered population of "Little Red Dot" galaxies. This represents the first demonstration of agentic research in astronomy, advancing towards end-to-end research via LLM agents and potentially expediting astronomical discoveries.
ISSN:2331-8422