Active control of excitonic strong coupling and electroluminescence in electrically driven plasmonic nanocavities
Enhancement and active control of light-matter interactions at the atomic scale is important for developing next-generation nanophotonic and quantum optical devices. Here, we demonstrate electric control of both excitonic strong coupling and electroluminescence by integrating semiconductor monolayer...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Enhancement and active control of light-matter interactions at the atomic scale is important for developing next-generation nanophotonic and quantum optical devices. Here, we demonstrate electric control of both excitonic strong coupling and electroluminescence by integrating semiconductor monolayers into a nanometer gap of electrically driven nanocube-on-mirror plasmonic nanocavities. Particularly, in a strongly-coupled system of nanocavity plasmons and WSe2 excitons, the ultra-strong electric field generated in the nanocavity gap enables a reversible modulation of the Rabi splitting between ~102 and 80 meV with a bias below 2.5 V. In the quantum tunnelling regime, by injecting carriers into a nanocavity-integrated WS2 monolayer, bias-controlled spectrally tunable electroluminescence from charged or neutral excitons is achieved with an external quantum efficiency reaching ~3.5%. These results underline practical approaches to electric control of atomic-scale light-matter interactions for applications including nanoscale light sources, ultrafast electro-optic modulation, quantum information processing and sensing. |
---|---|
ISSN: | 2331-8422 |