Innovative integration of maturity detection and robotic technology for enhanced litchi harvesting

An integrated approach marries an optimized YOLOv7 deep learning model with a 6-axis robotic arm, featuring a novel end-effector design, to elevate automated litchi harvesting. The model, refined with ACmix attention and Focal-EIoU loss functions, adeptly identifies litchi maturity across diverse or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2024-09, Vol.2842 (1), p.12074
Hauptverfasser: Xiong, Juntao, Huang, Qiyin, Jiang, Xinjing, Zhou, Chengzhuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An integrated approach marries an optimized YOLOv7 deep learning model with a 6-axis robotic arm, featuring a novel end-effector design, to elevate automated litchi harvesting. The model, refined with ACmix attention and Focal-EIoU loss functions, adeptly identifies litchi maturity across diverse orchard settings, overcoming challenges like variable lighting and occlusions. Rigorous field validations and real-world applications demonstrate the system’s efficacy, with an 85.7% success rate in precisely harvesting mature litchis. This fusion of cutting-edge image recognition with strategic mechanical innovation effectively mitigates labor shortages and enhances productivity, marking a significant leap forward in orchard automation.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2842/1/012074