On Existence of Multiple Normalized Solutions to a Class of Elliptic Problems in Whole RN Via Penalization Method

In this paper we study the existence of multiple normalized solutions to the following class of elliptic problems - ϵ 2 Δ u + V ( x ) u = λ u + f ( u ) , in R N , ∫ R N | u | 2 d x = a 2 ϵ N , where a , ϵ > 0 , λ ∈ R is an unknown parameter that appears as a Lagrange multiplier, V : R N → [ 0 , ∞...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Potential analysis 2024, Vol.61 (3), p.463-483
Hauptverfasser: Alves, Claudianor O., Van Thin, Nguyen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 483
container_issue 3
container_start_page 463
container_title Potential analysis
container_volume 61
creator Alves, Claudianor O.
Van Thin, Nguyen
description In this paper we study the existence of multiple normalized solutions to the following class of elliptic problems - ϵ 2 Δ u + V ( x ) u = λ u + f ( u ) , in R N , ∫ R N | u | 2 d x = a 2 ϵ N , where a , ϵ > 0 , λ ∈ R is an unknown parameter that appears as a Lagrange multiplier, V : R N → [ 0 , ∞ ) is a continuous function, and f is a continuous function with L 2 -subcritical growth. It is proved that the number of normalized solutions is related to the topological richness of the set where the potential V attains its minimum value. In the proof of our main result, we apply minimization techniques, Lusternik-Schnirelmann category and the penalization method due to del Pino and Felmer (Calc. Var. Partial Differential Equations 4 , 121–137 1996 ).
doi_str_mv 10.1007/s11118-023-10116-2
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3108730116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108730116</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-f8e31188ab46b37950df104526bc289c953b665de97695c6e50c799d6645aed33</originalsourceid><addsrcrecordid>eNpFkEtLxDAUhYMoOI7-AVcB19U8JkmzlGF8wLzwvQtpmzoZMk2nSUH89aaO4N1cuJxzOPcD4BKja4yQuAk4TZ4hQjOMMOYZOQIjzATJJJEfx2CEJElHjvApOAthixAiQuQjsF81cPZlQzRNaaCv4aJ30bbOwKXvdtrZb1PBZ-_6aH0TYPRQw6nTIQzamXO2jbaE684XzuwCtA183_jkflrCN6vh2jRDhh7ccGHixlfn4KTWLpiLvz0Gr3ezl-lDNl_dP05v51mbeseszg1NL-W6mPCCCslQVWM0YYQXJcllKRktOGeVkYJLVnLDUCmkrDifMG0qSsfg6pDbdn7fmxDV1vddqhMUxSgXdOCUVPSgCm1nm0_T_aswUgNbdWCrElv1y1YR-gOWrmwG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108730116</pqid></control><display><type>article</type><title>On Existence of Multiple Normalized Solutions to a Class of Elliptic Problems in Whole RN Via Penalization Method</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alves, Claudianor O. ; Van Thin, Nguyen</creator><creatorcontrib>Alves, Claudianor O. ; Van Thin, Nguyen</creatorcontrib><description>In this paper we study the existence of multiple normalized solutions to the following class of elliptic problems - ϵ 2 Δ u + V ( x ) u = λ u + f ( u ) , in R N , ∫ R N | u | 2 d x = a 2 ϵ N , where a , ϵ &gt; 0 , λ ∈ R is an unknown parameter that appears as a Lagrange multiplier, V : R N → [ 0 , ∞ ) is a continuous function, and f is a continuous function with L 2 -subcritical growth. It is proved that the number of normalized solutions is related to the topological richness of the set where the potential V attains its minimum value. In the proof of our main result, we apply minimization techniques, Lusternik-Schnirelmann category and the penalization method due to del Pino and Felmer (Calc. Var. Partial Differential Equations 4 , 121–137 1996 ).</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-023-10116-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Continuity (mathematics) ; Functional Analysis ; Geometry ; Lagrange multiplier ; Mathematics ; Mathematics and Statistics ; Partial differential equations ; Potential Theory ; Probability Theory and Stochastic Processes</subject><ispartof>Potential analysis, 2024, Vol.61 (3), p.463-483</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11118-023-10116-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11118-023-10116-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Alves, Claudianor O.</creatorcontrib><creatorcontrib>Van Thin, Nguyen</creatorcontrib><title>On Existence of Multiple Normalized Solutions to a Class of Elliptic Problems in Whole RN Via Penalization Method</title><title>Potential analysis</title><addtitle>Potential Anal</addtitle><description>In this paper we study the existence of multiple normalized solutions to the following class of elliptic problems - ϵ 2 Δ u + V ( x ) u = λ u + f ( u ) , in R N , ∫ R N | u | 2 d x = a 2 ϵ N , where a , ϵ &gt; 0 , λ ∈ R is an unknown parameter that appears as a Lagrange multiplier, V : R N → [ 0 , ∞ ) is a continuous function, and f is a continuous function with L 2 -subcritical growth. It is proved that the number of normalized solutions is related to the topological richness of the set where the potential V attains its minimum value. In the proof of our main result, we apply minimization techniques, Lusternik-Schnirelmann category and the penalization method due to del Pino and Felmer (Calc. Var. Partial Differential Equations 4 , 121–137 1996 ).</description><subject>Continuity (mathematics)</subject><subject>Functional Analysis</subject><subject>Geometry</subject><subject>Lagrange multiplier</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial differential equations</subject><subject>Potential Theory</subject><subject>Probability Theory and Stochastic Processes</subject><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkEtLxDAUhYMoOI7-AVcB19U8JkmzlGF8wLzwvQtpmzoZMk2nSUH89aaO4N1cuJxzOPcD4BKja4yQuAk4TZ4hQjOMMOYZOQIjzATJJJEfx2CEJElHjvApOAthixAiQuQjsF81cPZlQzRNaaCv4aJ30bbOwKXvdtrZb1PBZ-_6aH0TYPRQw6nTIQzamXO2jbaE684XzuwCtA183_jkflrCN6vh2jRDhh7ccGHixlfn4KTWLpiLvz0Gr3ezl-lDNl_dP05v51mbeseszg1NL-W6mPCCCslQVWM0YYQXJcllKRktOGeVkYJLVnLDUCmkrDifMG0qSsfg6pDbdn7fmxDV1vddqhMUxSgXdOCUVPSgCm1nm0_T_aswUgNbdWCrElv1y1YR-gOWrmwG</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Alves, Claudianor O.</creator><creator>Van Thin, Nguyen</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2024</creationdate><title>On Existence of Multiple Normalized Solutions to a Class of Elliptic Problems in Whole RN Via Penalization Method</title><author>Alves, Claudianor O. ; Van Thin, Nguyen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-f8e31188ab46b37950df104526bc289c953b665de97695c6e50c799d6645aed33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Continuity (mathematics)</topic><topic>Functional Analysis</topic><topic>Geometry</topic><topic>Lagrange multiplier</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial differential equations</topic><topic>Potential Theory</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, Claudianor O.</creatorcontrib><creatorcontrib>Van Thin, Nguyen</creatorcontrib><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, Claudianor O.</au><au>Van Thin, Nguyen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Existence of Multiple Normalized Solutions to a Class of Elliptic Problems in Whole RN Via Penalization Method</atitle><jtitle>Potential analysis</jtitle><stitle>Potential Anal</stitle><date>2024</date><risdate>2024</risdate><volume>61</volume><issue>3</issue><spage>463</spage><epage>483</epage><pages>463-483</pages><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>In this paper we study the existence of multiple normalized solutions to the following class of elliptic problems - ϵ 2 Δ u + V ( x ) u = λ u + f ( u ) , in R N , ∫ R N | u | 2 d x = a 2 ϵ N , where a , ϵ &gt; 0 , λ ∈ R is an unknown parameter that appears as a Lagrange multiplier, V : R N → [ 0 , ∞ ) is a continuous function, and f is a continuous function with L 2 -subcritical growth. It is proved that the number of normalized solutions is related to the topological richness of the set where the potential V attains its minimum value. In the proof of our main result, we apply minimization techniques, Lusternik-Schnirelmann category and the penalization method due to del Pino and Felmer (Calc. Var. Partial Differential Equations 4 , 121–137 1996 ).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11118-023-10116-2</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-2601
ispartof Potential analysis, 2024, Vol.61 (3), p.463-483
issn 0926-2601
1572-929X
language eng
recordid cdi_proquest_journals_3108730116
source SpringerLink Journals - AutoHoldings
subjects Continuity (mathematics)
Functional Analysis
Geometry
Lagrange multiplier
Mathematics
Mathematics and Statistics
Partial differential equations
Potential Theory
Probability Theory and Stochastic Processes
title On Existence of Multiple Normalized Solutions to a Class of Elliptic Problems in Whole RN Via Penalization Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Existence%20of%20Multiple%20Normalized%20Solutions%20to%20a%20Class%20of%20Elliptic%20Problems%20in%20Whole%20RN%20Via%20Penalization%20Method&rft.jtitle=Potential%20analysis&rft.au=Alves,%20Claudianor%20O.&rft.date=2024&rft.volume=61&rft.issue=3&rft.spage=463&rft.epage=483&rft.pages=463-483&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-023-10116-2&rft_dat=%3Cproquest_sprin%3E3108730116%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108730116&rft_id=info:pmid/&rfr_iscdi=true