On Existence of Multiple Normalized Solutions to a Class of Elliptic Problems in Whole RN Via Penalization Method
In this paper we study the existence of multiple normalized solutions to the following class of elliptic problems - ϵ 2 Δ u + V ( x ) u = λ u + f ( u ) , in R N , ∫ R N | u | 2 d x = a 2 ϵ N , where a , ϵ > 0 , λ ∈ R is an unknown parameter that appears as a Lagrange multiplier, V : R N → [ 0 , ∞...
Gespeichert in:
Veröffentlicht in: | Potential analysis 2024, Vol.61 (3), p.463-483 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the existence of multiple normalized solutions to the following class of elliptic problems
-
ϵ
2
Δ
u
+
V
(
x
)
u
=
λ
u
+
f
(
u
)
,
in
R
N
,
∫
R
N
|
u
|
2
d
x
=
a
2
ϵ
N
,
where
a
,
ϵ
>
0
,
λ
∈
R
is an unknown parameter that appears as a Lagrange multiplier,
V
:
R
N
→
[
0
,
∞
)
is a continuous function, and
f
is a continuous function with
L
2
-subcritical growth. It is proved that the number of normalized solutions is related to the topological richness of the set where the potential
V
attains its minimum value. In the proof of our main result, we apply minimization techniques, Lusternik-Schnirelmann category and the penalization method due to del Pino and Felmer (Calc. Var. Partial Differential Equations
4
, 121–137
1996
). |
---|---|
ISSN: | 0926-2601 1572-929X |
DOI: | 10.1007/s11118-023-10116-2 |