How flagellated bacteria wobble

A flagellated bacterium navigates fluid environments by rotating its helical flagellar bundle. The wobbling of the bacterial body significantly influences its swimming behavior. To quantify the three underlying motions--precession, nutation, and spin, we extract the Euler angles from trajectories ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Hu, Jinglei, Chen, Gui, Mao, Mingxin, Pu Feng, Liu, Yurui, Gong, Xiangjun, Gompper, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A flagellated bacterium navigates fluid environments by rotating its helical flagellar bundle. The wobbling of the bacterial body significantly influences its swimming behavior. To quantify the three underlying motions--precession, nutation, and spin, we extract the Euler angles from trajectories generated by mesoscale hydrodynamics simulations, which is experimentally unattainable. In contrast to the common assumption, the cell body does not undergo complete cycles of spin, a general result for multiflagellated bacteria. Our simulations produce apparent wobbling periods that closely match the results of {\it E. coli} obtained from experiments and reveal the presence of two kinds of precession modes, consistent with theoretical analysis. Small-amplitude yet periodic nutation is also observed in the simulations.
ISSN:2331-8422