Bott–Chern Formality and Massey Products on Strong Kähler with Torsion and Kähler Solvmanifolds
We study the interplay between geometrically-Bott–Chern-formal metrics and SKT metrics. We prove that a 6-dimensional nilmanifold endowed with a invariant complex structure admits an SKT metric if and only if it is geometrically-Bott–Chern-formal. We also provide some partial results in higher dimen...
Gespeichert in:
Veröffentlicht in: | The Journal of geometric analysis 2024-11, Vol.34 (11), Article 348 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the interplay between geometrically-Bott–Chern-formal metrics and SKT metrics. We prove that a 6-dimensional nilmanifold endowed with a invariant complex structure admits an SKT metric if and only if it is geometrically-Bott–Chern-formal. We also provide some partial results in higher dimensions for nilmanifolds endowed with a class of suitable complex structures. Furthermore, we prove that any Kähler solvmanifold is geometrically formal. Finally, we explicitly construct lattices for a complex solvable Lie group in the list of Nakamura (J Differ Geom 10:85–112, 1975) on which we provide a non vanishing quadruple
ABC
-Massey product. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-024-01764-w |