Solutions for Singular Quasilinear Equations of N-Laplacian Type with Critical Exponential Growth

In this paper, we study the following singular quasilinear equation, - Δ N u + V ( x ) | u | N - 2 u = f ( x , u ) | x | β , in R N , N ≥ 2 , where Δ N u : = div ( | ∇ u | N - 2 ∇ u ) , 0 < β < N , V ∈ C ( R N , R ) and f has critical exponential growth at infinity. We establish a compactness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2024-11, Vol.34 (11), Article 346
Hauptverfasser: Liu, Boxue, Lai, Lizhen, Qin, Dongdong, Sahara, Siti, Wu, Qingfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the following singular quasilinear equation, - Δ N u + V ( x ) | u | N - 2 u = f ( x , u ) | x | β , in R N , N ≥ 2 , where Δ N u : = div ( | ∇ u | N - 2 ∇ u ) , 0 < β < N , V ∈ C ( R N , R ) and f has critical exponential growth at infinity. We establish a compactness lemma for functional ∫ R N F ( x , u ) | x | β d x and develop some delicate analyses to deal with non-standard difficulties caused by singular term f ( x , u ) | x | β and the compactness issue. We introduce some natural assumptions on the nonlinearity f and obtain the existence of Mountain-pass type solution and ground state solution for above equation. Moreover, two distinct solutions, one has positive energy while the other one has negative energy, are established for the above equation with a perturbation.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-024-01791-7