Variation comparison between infinitely divisible distributions and the normal distribution
Let X be a random variable with finite second moment. We investigate the inequality: P { | X - E [ X ] | ≤ Var ( X ) } ≥ P { | Z | ≤ 1 } , where Z is a standard normal random variable. We prove that this inequality holds for many familiar infinitely divisible continuous distributions including the L...
Gespeichert in:
Veröffentlicht in: | Statistical papers (Berlin, Germany) Germany), 2024-09, Vol.65 (7), p.4405-4429 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be a random variable with finite second moment. We investigate the inequality:
P
{
|
X
-
E
[
X
]
|
≤
Var
(
X
)
}
≥
P
{
|
Z
|
≤
1
}
, where
Z
is a standard normal random variable. We prove that this inequality holds for many familiar infinitely divisible continuous distributions including the Laplace, Gumbel, Logistic, Pareto, infinitely divisible Weibull, Log-normal, Student’s
t
and Inverse Gaussian distributions. Numerical results are given to show that the inequality with continuity correction also holds for some infinitely divisible discrete distributions. |
---|---|
ISSN: | 0932-5026 1613-9798 |
DOI: | 10.1007/s00362-024-01561-1 |