Variation comparison between infinitely divisible distributions and the normal distribution

Let X be a random variable with finite second moment. We investigate the inequality: P { | X - E [ X ] | ≤ Var ( X ) } ≥ P { | Z | ≤ 1 } , where Z is a standard normal random variable. We prove that this inequality holds for many familiar infinitely divisible continuous distributions including the L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical papers (Berlin, Germany) Germany), 2024-09, Vol.65 (7), p.4405-4429
Hauptverfasser: Sun, Ping, Hu, Ze-Chun, Sun, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a random variable with finite second moment. We investigate the inequality: P { | X - E [ X ] | ≤ Var ( X ) } ≥ P { | Z | ≤ 1 } , where Z is a standard normal random variable. We prove that this inequality holds for many familiar infinitely divisible continuous distributions including the Laplace, Gumbel, Logistic, Pareto, infinitely divisible Weibull, Log-normal, Student’s t and Inverse Gaussian distributions. Numerical results are given to show that the inequality with continuity correction also holds for some infinitely divisible discrete distributions.
ISSN:0932-5026
1613-9798
DOI:10.1007/s00362-024-01561-1