New evidence of syn-eruptive magma-carbonate interaction: the case study of the Pomici di Avellino eruption at Somma-Vesuvius (Italy)

Calcareous lithics are commonly found within the products of some explosive eruptions of Somma-Vesuvius. The pumice fragments from the final phase of the Plinian fallout event of the Pomici di Avellino eruption contain abundant calcareous xenoliths. Previous work on that eruption, including numerica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of volcanology 2024-09, Vol.86 (10), Article 83
Hauptverfasser: Mele, Daniela, Knuever, Marco, Dellino, Pierfrancesco, Costa, Antonio, Fornelli, Annamaria, Massaro, Silvia, Sulpizio, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Calcareous lithics are commonly found within the products of some explosive eruptions of Somma-Vesuvius. The pumice fragments from the final phase of the Plinian fallout event of the Pomici di Avellino eruption contain abundant calcareous xenoliths. Previous work on that eruption, including numerical simulations, suggested that the release of CO 2 from the entrapment of carbonates may have prolonged the magmatic phase of the eruption by maintaining sufficient driving pressure in the feeding dike. The texture and thermo-metamorphic reactions of carbonate xenolith-bearing pumice fragments of the Pomici di Avellino eruption are analyzed through petrography, scanning electron microscope images, energy dispersive spectrometer analyses, and micro-computed X-ray tomography to deduce the behavior of short-term carbonate-magma interaction and its contribution to the eruption dynamics. Results show that calcareous xenoliths experienced short-term magma-carbonate interaction, which took place in three steps: (i) entrainment, i.e., the mechanical process of carbonate xenoliths entrapment into a magma; (ii) decarbonation, related to high-temperature decomposition reaction of the xenoliths; and (iii) digestion or dissolution of the incorporated calcareous xenoliths into the melt with diffusion of Ca and Mg. The CO 2 released during the syn-eruptive decarbonation process thus provided extra volatiles to the rising magma, which may have maintained magma buoyancy longer than expected if only magmatic volatiles were involved in the eruption.
ISSN:1432-0819
0258-8900
1432-0819
DOI:10.1007/s00445-024-01773-1