Constraining mapping class group homomorphisms using finite subgroups

We classify homomorphisms from mapping class groups by using arguments involving finite subgroups. First, we give a new proof of a result of Aramayona–Souto that all homomorphisms between certain mapping class groups of closed surfaces are trivial. Second, we show that only finitely many mapping cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2024-10, Vol.218 (5), Article 100
Hauptverfasser: Chen, Lei, Lanier, Justin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Geometriae dedicata
container_volume 218
creator Chen, Lei
Lanier, Justin
description We classify homomorphisms from mapping class groups by using arguments involving finite subgroups. First, we give a new proof of a result of Aramayona–Souto that all homomorphisms between certain mapping class groups of closed surfaces are trivial. Second, we show that only finitely many mapping class groups of closed surfaces have nontrivial homomorphisms to Homeo ( S n ) for any n , where S n is the n -sphere. We also effectivize this result for small values of n ; for instance, we prove that every homomorphism from Mod ( S g ) to Homeo ( S 2 ) or Homeo ( S 3 ) is trivial if g ≥ 3 , extending a result of Franks–Handel.
doi_str_mv 10.1007/s10711-024-00918-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3107467463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107467463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-4ec5a72fb07878e75579f077c80cac54f3f63bf489d260109460b010f58818783</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4GrAdfQmk0wySynVCgU3ug6ZmEyndH7MnVn07U07gjtJ4FvkfPeGQ8g9g0cGoJ6QgWKMAhcUoGSaHi_IgknFackKfUkWAKKgUkl5TW4Q95AopfiCrFd9h2O0Tdd0ddbaYTilO1jErI79NGS7vk0nDrsGW8wmPL2HhI8-w6k6M3hLroI9oL_7zSX5fFl_rDZ0-_76tnreUseFGKnwTlrFQwVKK-3Tb1QZQCmnwVknRchDkVdB6PKLF8CgFAVUKYPUmqVGviQP89wh9t-Tx9Hs-yl2aaXJkwFRpJsnis-Uiz1i9MEMsWltPBoG5qTLzLpM0mXOuswxlfK5hAnuah__Rv_T-gF65G3G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107467463</pqid></control><display><type>article</type><title>Constraining mapping class group homomorphisms using finite subgroups</title><source>Springer Nature - Complete Springer Journals</source><creator>Chen, Lei ; Lanier, Justin</creator><creatorcontrib>Chen, Lei ; Lanier, Justin</creatorcontrib><description>We classify homomorphisms from mapping class groups by using arguments involving finite subgroups. First, we give a new proof of a result of Aramayona–Souto that all homomorphisms between certain mapping class groups of closed surfaces are trivial. Second, we show that only finitely many mapping class groups of closed surfaces have nontrivial homomorphisms to Homeo ( S n ) for any n , where S n is the n -sphere. We also effectivize this result for small values of n ; for instance, we prove that every homomorphism from Mod ( S g ) to Homeo ( S 2 ) or Homeo ( S 3 ) is trivial if g ≥ 3 , extending a result of Franks–Handel.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-024-00918-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Convex and Discrete Geometry ; Differential Geometry ; Homomorphisms ; Hyperbolic Geometry ; Mapping ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Subgroups ; Topology</subject><ispartof>Geometriae dedicata, 2024-10, Vol.218 (5), Article 100</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-4ec5a72fb07878e75579f077c80cac54f3f63bf489d260109460b010f58818783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-024-00918-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-024-00918-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Lanier, Justin</creatorcontrib><title>Constraining mapping class group homomorphisms using finite subgroups</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>We classify homomorphisms from mapping class groups by using arguments involving finite subgroups. First, we give a new proof of a result of Aramayona–Souto that all homomorphisms between certain mapping class groups of closed surfaces are trivial. Second, we show that only finitely many mapping class groups of closed surfaces have nontrivial homomorphisms to Homeo ( S n ) for any n , where S n is the n -sphere. We also effectivize this result for small values of n ; for instance, we prove that every homomorphism from Mod ( S g ) to Homeo ( S 2 ) or Homeo ( S 3 ) is trivial if g ≥ 3 , extending a result of Franks–Handel.</description><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Homomorphisms</subject><subject>Hyperbolic Geometry</subject><subject>Mapping</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Subgroups</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1KAzEURoMoWKsv4GrAdfQmk0wySynVCgU3ug6ZmEyndH7MnVn07U07gjtJ4FvkfPeGQ8g9g0cGoJ6QgWKMAhcUoGSaHi_IgknFackKfUkWAKKgUkl5TW4Q95AopfiCrFd9h2O0Tdd0ddbaYTilO1jErI79NGS7vk0nDrsGW8wmPL2HhI8-w6k6M3hLroI9oL_7zSX5fFl_rDZ0-_76tnreUseFGKnwTlrFQwVKK-3Tb1QZQCmnwVknRchDkVdB6PKLF8CgFAVUKYPUmqVGviQP89wh9t-Tx9Hs-yl2aaXJkwFRpJsnis-Uiz1i9MEMsWltPBoG5qTLzLpM0mXOuswxlfK5hAnuah__Rv_T-gF65G3G</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Chen, Lei</creator><creator>Lanier, Justin</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>Constraining mapping class group homomorphisms using finite subgroups</title><author>Chen, Lei ; Lanier, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-4ec5a72fb07878e75579f077c80cac54f3f63bf489d260109460b010f58818783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Homomorphisms</topic><topic>Hyperbolic Geometry</topic><topic>Mapping</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Subgroups</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Lanier, Justin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lei</au><au>Lanier, Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraining mapping class group homomorphisms using finite subgroups</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>218</volume><issue>5</issue><artnum>100</artnum><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>We classify homomorphisms from mapping class groups by using arguments involving finite subgroups. First, we give a new proof of a result of Aramayona–Souto that all homomorphisms between certain mapping class groups of closed surfaces are trivial. Second, we show that only finitely many mapping class groups of closed surfaces have nontrivial homomorphisms to Homeo ( S n ) for any n , where S n is the n -sphere. We also effectivize this result for small values of n ; for instance, we prove that every homomorphism from Mod ( S g ) to Homeo ( S 2 ) or Homeo ( S 3 ) is trivial if g ≥ 3 , extending a result of Franks–Handel.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-024-00918-y</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0046-5755
ispartof Geometriae dedicata, 2024-10, Vol.218 (5), Article 100
issn 0046-5755
1572-9168
language eng
recordid cdi_proquest_journals_3107467463
source Springer Nature - Complete Springer Journals
subjects Algebraic Geometry
Convex and Discrete Geometry
Differential Geometry
Homomorphisms
Hyperbolic Geometry
Mapping
Mathematics
Mathematics and Statistics
Original Paper
Projective Geometry
Subgroups
Topology
title Constraining mapping class group homomorphisms using finite subgroups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraining%20mapping%20class%20group%20homomorphisms%20using%20finite%20subgroups&rft.jtitle=Geometriae%20dedicata&rft.au=Chen,%20Lei&rft.date=2024-10-01&rft.volume=218&rft.issue=5&rft.artnum=100&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-024-00918-y&rft_dat=%3Cproquest_cross%3E3107467463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107467463&rft_id=info:pmid/&rfr_iscdi=true