Constraining mapping class group homomorphisms using finite subgroups

We classify homomorphisms from mapping class groups by using arguments involving finite subgroups. First, we give a new proof of a result of Aramayona–Souto that all homomorphisms between certain mapping class groups of closed surfaces are trivial. Second, we show that only finitely many mapping cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2024-10, Vol.218 (5), Article 100
Hauptverfasser: Chen, Lei, Lanier, Justin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We classify homomorphisms from mapping class groups by using arguments involving finite subgroups. First, we give a new proof of a result of Aramayona–Souto that all homomorphisms between certain mapping class groups of closed surfaces are trivial. Second, we show that only finitely many mapping class groups of closed surfaces have nontrivial homomorphisms to Homeo ( S n ) for any n , where S n is the n -sphere. We also effectivize this result for small values of n ; for instance, we prove that every homomorphism from Mod ( S g ) to Homeo ( S 2 ) or Homeo ( S 3 ) is trivial if g ≥ 3 , extending a result of Franks–Handel.
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-024-00918-y