An end-to-end recurrent compressed sensing method to denoise, detect and demix calcium imaging data
Two-photon calcium imaging provides large-scale recordings of neuronal activities at cellular resolution. A robust, automated and high-speed pipeline to simultaneously segment the spatial footprints of neurons and extract their temporal activity traces while decontaminating them from background, noi...
Gespeichert in:
Veröffentlicht in: | Nature machine intelligence 2024-09, Vol.6 (9), p.1106-1118 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two-photon calcium imaging provides large-scale recordings of neuronal activities at cellular resolution. A robust, automated and high-speed pipeline to simultaneously segment the spatial footprints of neurons and extract their temporal activity traces while decontaminating them from background, noise and overlapping neurons is highly desirable to analyse calcium imaging data. Here we demonstrate DeepCaImX, an end-to-end deep learning method based on an iterative shrinkage-thresholding algorithm and a long short-term memory neural network to achieve the above goals altogether at a very high speed and without any manually tuned hyperparameter. DeepCaImX is a multi-task, multi-class and multi-label segmentation method composed of a compressed sensing-inspired neural network with a recurrent layer and fully connected layers. The neural network can simultaneously generate accurate neuronal footprints and extract clean neuronal activity traces from calcium imaging data. We trained the neural network with simulated datasets and benchmarked it against existing state-of-the-art methods with in vivo experimental data. DeepCaImX outperforms existing methods in the quality of segmentation and temporal trace extraction as well as processing speed. DeepCaImX is highly scalable and will benefit the analysis of mesoscale calcium imaging.
Extracting time traces and spatial footprints of single neurons from population calcium imaging data presents challenges. Zhang et al. introduce a deep learning method that efficiently segments neuronal footprints and extracts activity traces from these data. The method surpasses existing approaches in both quality and speed, providing a robust tool for large-scale neuronal circuit analysis. |
---|---|
ISSN: | 2522-5839 2522-5839 |
DOI: | 10.1038/s42256-024-00892-w |