Estimation of Conditional Density Functions by Conformal Prediction and Model Averaging

In this research, we put forward a type of model averaging methods for estimating the conditional density function, based on a non-parametric estimation method and two different loss functions. Such methods provide accurate and stable estimation of the conditional density function. In addition, we d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IAENG international journal of applied mathematics 2024-08, Vol.54 (8), p.1678-1688
Hauptverfasser: Zhao, Jinhao, Cui, Guangyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this research, we put forward a type of model averaging methods for estimating the conditional density function, based on a non-parametric estimation method and two different loss functions. Such methods provide accurate and stable estimation of the conditional density function. In addition, we develop prediction bands for the conditional density function in the case of finite samples by combining conformal prediction and model averaging. Conclusions from computational simulations and real data assessments based on photometric redshift estimation indicate the superiority of our proposed methods in comparison to other alternative methods.
ISSN:1992-9978
1992-9986