Growth-Induced Unconventional Magnetic Anisotropy in Co/Fullerene (C60) Bilayer Systems; Insights from a Two-Grain Stoner-Wohlfarth Model
Organic spintronics has drawn the interest of the science community due to various applications in spin-valve devices. However, an efficient room-temperature Organic Spin Valve device has not been experimentally realized due to the complicated spin transport at the metal-organic interfaces. The pres...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Organic spintronics has drawn the interest of the science community due to various applications in spin-valve devices. However, an efficient room-temperature Organic Spin Valve device has not been experimentally realized due to the complicated spin transport at the metal-organic interfaces. The present study focuses on a comprehensive understanding of the interfacial properties essential for advancing device performance and functionality. The structural and magnetic properties of the ultra-thin Cobalt (Co) films deposited on the fullerene (C60) layer are studied to investigate the origin of magnetic anisotropy in the metal-organic bilayer structures. Due to the mechanical softness of C60, penetration of ferromagnetic Co atoms inside the C60 film is confirmed by the X-ray reflectivity and Secondary Ion Mass Spectroscopy measurements. Grazing incidence small-angle X-ray scattering and atomic force microscopy provided information regarding the structural and morphological properties of the Co/C60 bilayers, angular dependent Magneto-optic Kerr effect measurements with varying Co layer thickness provided information about the growth-induced uniaxial magnetic anisotropy. In contrast to the inorganic silicon substrates, magnetic anisotropy in Co film tends to develop at 25 Å thickness on the C60 layer, which further increases with the thickness of Cobalt. The anomalous behavior in coercivity and remanence variation along the nominal hard axis is explained by a two-grain Stoner-Wohlfarth model with intergranular exchange coupling. It is further confirmed by a non-uniform spatial distribution of magnetic domains investigated through Kerr microscopy. These anomalies could be attributed to the distribution of magneto-crystalline anisotropy and inhomogeneous strain caused by the formation of a diffused layer at the Co/C60 interface. |
---|---|
ISSN: | 2331-8422 |