Revealing the Origin and Nature of the Buried Metal-Substrate Interface Layer in Ta/Sapphire Superconducting Films
Despite constituting a smaller fraction of the qubits electromagnetic mode, surfaces and interfaces can exert significant influence as sources of high-loss tangents, which brings forward the need to reveal properties of these extended defects and identify routes to their control. Here, we examine th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite constituting a smaller fraction of the qubits electromagnetic mode, surfaces and interfaces can exert significant influence as sources of high-loss tangents, which brings forward the need to reveal properties of these extended defects and identify routes to their control. Here, we examine the structure and composition of the metal-substrate interfacial layer that exists in Ta/sapphire-based superconducting films. Synchrotron-based X-ray reflectivity measurements of Ta films, commonly used in these qubits, reveal an unexplored interface layer at the metal-substrate interface. Scanning transmission electron microscopy and core-level electron energy loss spectroscopy identified an approximately 0.65 \ \text{nm} \pm 0.05 \ \text{nm} thick intermixing layer at the metal-substrate interface containing Al, O, and Ta atoms. Density functional theory (DFT) modeling reveals that the structure and properties of the Ta/sapphire heterojunctions are determined by the oxygen content on the sapphire surface prior to Ta deposition, as discussed for the limiting cases of Ta films on the O-rich versus Al-rich Al2O3 (0001) surface. By using a multimodal approach, integrating various material characterization techniques and DFT modeling, we have gained deeper insights into the interface layer between the metal and substrate. This intermixing at the metal-substrate interface influences their thermodynamic stability and electronic behavior, which may affect qubit performance. |
---|---|
ISSN: | 2331-8422 |