On two classes of Rényi entropy functions of a quantum channel
In this paper, we define the Rényi entropy H QC p ( Φ ) of a quantum channel Φ , leveraging the isomorphic correspondence between quantum channels and their Choi states. We demonstrate that it satisfies all axioms of an entropy function. Additionally, we introduce the Rényi relative entorpy H Re p (...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2024-09, Vol.139 (9), p.828, Article 828 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we define the Rényi entropy
H
QC
p
(
Φ
)
of a quantum channel
Φ
, leveraging the isomorphic correspondence between quantum channels and their Choi states. We demonstrate that it satisfies all axioms of an entropy function. Additionally, we introduce the Rényi relative entorpy
H
Re
p
(
Φ
)
of the quantum channel
Φ
and establish its relationship with
H
QC
p
(
Φ
)
. Furthermore, by the Rényi entropy
H
p
(
Φ
)
of the quantum channel
Φ
defined by Gour and Wilde, we proved that
H
QC
p
(
Φ
)
serves as an upper bound for
H
p
(
Φ
)
a general quantum channel
Φ
. As an example, we examined a specific type of Werner-Holevo channels and showed that these two Rényi entropies are equal for the parameter
p
∈
[
1
2
,
+
∞
)
and are a fixed constant number independent on the parameter
p
. Based on these results, we proved that the two classes of Rényi channel entropies are equal for finite-dimensional covariant channels and
p
∈
[
1
2
,
+
∞
)
. |
---|---|
ISSN: | 2190-5444 2190-5444 |
DOI: | 10.1140/epjp/s13360-024-05612-2 |