Computing Synthetic Controls Using Bilevel Optimization

The synthetic control method (SCM) represents a notable innovation in estimating the causal effects of policy interventions and programs in a comparative case study setting. In this paper, we demonstrate that the data-driven approach to SCM requires solving a bilevel optimization problem. We show ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational economics 2024-08, Vol.64 (2), p.1113-1136
Hauptverfasser: Malo, Pekka, Eskelinen, Juha, Zhou, Xun, Kuosmanen, Timo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The synthetic control method (SCM) represents a notable innovation in estimating the causal effects of policy interventions and programs in a comparative case study setting. In this paper, we demonstrate that the data-driven approach to SCM requires solving a bilevel optimization problem. We show how the original SCM problem can be solved to the global optimum through the introduction of an iterative algorithm rooted in Tykhonov regularization or Karush–Kuhn–Tucker approximations.
ISSN:0927-7099
1572-9974
DOI:10.1007/s10614-023-10471-7