Color-avoiding percolation and branching processes

We study a variant of the color-avoiding percolation model introduced by Krause et al., namely we investigate the color-avoiding bond percolation setup on (not necessarily properly) edge-colored Erdős–Rényi random graphs. We say that two vertices are color-avoiding connected in an edge-colored graph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2024-09, Vol.61 (3), p.942-966
Hauptverfasser: Fekete, Panna Tímea, Molontay, Roland, Ráth, Balázs, Varga, Kitti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a variant of the color-avoiding percolation model introduced by Krause et al., namely we investigate the color-avoiding bond percolation setup on (not necessarily properly) edge-colored Erdős–Rényi random graphs. We say that two vertices are color-avoiding connected in an edge-colored graph if, after the removal of the edges of any color, they are in the same component in the remaining graph. The color-avoiding connected components of an edge-colored graph are maximal sets of vertices such that any two of them are color-avoiding connected. We consider the fraction of vertices contained in color-avoiding connected components of a given size, as well as the fraction of vertices contained in the giant color-avoidin g connected component. It is known that these quantities converge, and the limits can be expressed in terms of probabilities associated to edge-colored branching process trees. We provide explicit formulas for the limit of the fraction of vertices contained in the giant color-avoiding connected component, and we give a simpler asymptotic expression for it in the barely supercritical regime. In addition, in the two-colored case we also provide explicit formulas for the limit of the fraction of vertices contained in color-avoiding connected components of a given size.
ISSN:0021-9002
1475-6072
DOI:10.1017/jpr.2023.115