On the Kolmogorov constant explicit form in the theory of discrete-time stochastic branching systems
We consider a discrete-time population growth system called the Bienaymé–Galton–Watson stochastic branching system. We deal with a noncritical case, in which the per capita offspring mean $m\neq1$ . The famous Kolmogorov theorem asserts that the expectation of the population size in the subcritical...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 2024-09, Vol.61 (3), p.927-941 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a discrete-time population growth system called the Bienaymé–Galton–Watson stochastic branching system. We deal with a noncritical case, in which the per capita offspring mean
$m\neq1$
. The famous Kolmogorov theorem asserts that the expectation of the population size in the subcritical case
$m |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.1017/jpr.2023.85 |