Generators for the level \(m\) congruence subgroups of braid groups

We prove for \(m\geq1\) and \(n\geq5\) that the level \(m\) congruence subgroup \(B_n[m]\) of the braid group \(B_n\) associated to the integral Burau representation \(B_n\to\mathrm{GL}_n(\mathbb{Z})\) is generated by \(m\)th powers of half-twists and the braid Torelli group. This solves a problem o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Banerjee, Ishan, Huxford, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove for \(m\geq1\) and \(n\geq5\) that the level \(m\) congruence subgroup \(B_n[m]\) of the braid group \(B_n\) associated to the integral Burau representation \(B_n\to\mathrm{GL}_n(\mathbb{Z})\) is generated by \(m\)th powers of half-twists and the braid Torelli group. This solves a problem of Margalit, generalizing work of Assion, Brendle--Margalit, Nakamura, Stylianakis and Wajnryb.
ISSN:2331-8422