Generators for the level \(m\) congruence subgroups of braid groups
We prove for \(m\geq1\) and \(n\geq5\) that the level \(m\) congruence subgroup \(B_n[m]\) of the braid group \(B_n\) associated to the integral Burau representation \(B_n\to\mathrm{GL}_n(\mathbb{Z})\) is generated by \(m\)th powers of half-twists and the braid Torelli group. This solves a problem o...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove for \(m\geq1\) and \(n\geq5\) that the level \(m\) congruence subgroup \(B_n[m]\) of the braid group \(B_n\) associated to the integral Burau representation \(B_n\to\mathrm{GL}_n(\mathbb{Z})\) is generated by \(m\)th powers of half-twists and the braid Torelli group. This solves a problem of Margalit, generalizing work of Assion, Brendle--Margalit, Nakamura, Stylianakis and Wajnryb. |
---|---|
ISSN: | 2331-8422 |