Non-unitary Wightman CFTs and non-unitary vertex algebras

We give an equivalence of categories between: (i) M\"obius vertex algebras which are equipped with a choice of generating family of quasiprimary vectors, and (ii) (not-necessarily-unitary) M\"obius-covariant Wightman conformal field theories on the unit circle. We do not impose any technic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Carpi, Sebastiano, Raymond, Christopher, Tanimoto, Yoh, Tener, James E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give an equivalence of categories between: (i) M\"obius vertex algebras which are equipped with a choice of generating family of quasiprimary vectors, and (ii) (not-necessarily-unitary) M\"obius-covariant Wightman conformal field theories on the unit circle. We do not impose any technical restrictions on the theories considered (such as finite-dimensional conformal weight spaces or simplicity), yielding the most general equivalence between these two axiomatizations of two-dimensional chiral conformal field theory. This provides new opportunities to study non-unitary vertex algebras using the lens of algebraic conformal field theory and operator algebras, which we demonstrate by establishing a non-unitary version of the Reeh-Schlieder theorem.
ISSN:2331-8422