Non-unitary Wightman CFTs and non-unitary vertex algebras
We give an equivalence of categories between: (i) M\"obius vertex algebras which are equipped with a choice of generating family of quasiprimary vectors, and (ii) (not-necessarily-unitary) M\"obius-covariant Wightman conformal field theories on the unit circle. We do not impose any technic...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give an equivalence of categories between: (i) M\"obius vertex algebras which are equipped with a choice of generating family of quasiprimary vectors, and (ii) (not-necessarily-unitary) M\"obius-covariant Wightman conformal field theories on the unit circle. We do not impose any technical restrictions on the theories considered (such as finite-dimensional conformal weight spaces or simplicity), yielding the most general equivalence between these two axiomatizations of two-dimensional chiral conformal field theory. This provides new opportunities to study non-unitary vertex algebras using the lens of algebraic conformal field theory and operator algebras, which we demonstrate by establishing a non-unitary version of the Reeh-Schlieder theorem. |
---|---|
ISSN: | 2331-8422 |