Subsquares in random Latin squares
We prove that with probability \(1-o(1)\) as \(n \to \infty\), a uniformly random Latin square of order \(n\) contains no subsquare of order \(4\) or more, resolving a conjecture of McKay and Wanless. We also show that the expected number of subsquares of order 3 is bounded.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that with probability \(1-o(1)\) as \(n \to \infty\), a uniformly random Latin square of order \(n\) contains no subsquare of order \(4\) or more, resolving a conjecture of McKay and Wanless. We also show that the expected number of subsquares of order 3 is bounded. |
---|---|
ISSN: | 2331-8422 |