Subsquares in random Latin squares

We prove that with probability \(1-o(1)\) as \(n \to \infty\), a uniformly random Latin square of order \(n\) contains no subsquare of order \(4\) or more, resolving a conjecture of McKay and Wanless. We also show that the expected number of subsquares of order 3 is bounded.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Allsop, Jack, Wanless, Ian M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that with probability \(1-o(1)\) as \(n \to \infty\), a uniformly random Latin square of order \(n\) contains no subsquare of order \(4\) or more, resolving a conjecture of McKay and Wanless. We also show that the expected number of subsquares of order 3 is bounded.
ISSN:2331-8422