Functional Decomposition of Symmetric Multiple-Valued Functions and Their Compact Representation in Decision Diagrams
This paper proposes a decomposition method for symmetric multiple-valued functions. It decomposes a given symmetric multiple-valued function into three parts. By using suitable decision diagrams for the three parts, we can represent symmetric multiple-valued functions compactly. By deriving theorems...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2024/08/01, Vol.E107.D(8), pp.922-929 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a decomposition method for symmetric multiple-valued functions. It decomposes a given symmetric multiple-valued function into three parts. By using suitable decision diagrams for the three parts, we can represent symmetric multiple-valued functions compactly. By deriving theorems on sizes of the decision diagrams, this paper shows that space complexity of the proposed representation is low. This paper also presents algorithms to construct the decision diagrams for symmetric multiple-valued functions with low time complexity. Experimental results show that the proposed method represents randomly generated symmetric multiple-valued functions more compactly than the conventional representation method using standard multiple-valued decision diagrams. Symmetric multiple-valued functions are a basic class of functions, and thus, their compact representation benefits many applications where they appear. |
---|---|
ISSN: | 0916-8532 1745-1361 |
DOI: | 10.1587/transinf.2023LOP0010 |