On a class of capillarity phenomenon with logarithmic nonlinearity involving θ(·)-Laplacian operator

This research delves into a comprehensive investigation of a class of ℑ -Hilfer generalized fractional nonlinear equation originated from a capillarity phenomenon involving a logarithmic nonlinearity and Dirichlet boundary conditions. The nonlinearity of the problem, in general, do not satisfies the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2024-09, Vol.43 (6), Article 344
Hauptverfasser: elhoussain, Arhrrabi, Hamza, El-Houari, da C. Sousa, J. Vanterler
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research delves into a comprehensive investigation of a class of ℑ -Hilfer generalized fractional nonlinear equation originated from a capillarity phenomenon involving a logarithmic nonlinearity and Dirichlet boundary conditions. The nonlinearity of the problem, in general, do not satisfies the Ambrosetti-Rabinowitz type condition. Using critical point theorem with variational approach and the ( S + ) property of the operator, we establish the existence of positive solutions of our problem with respect to every positive parameter ξ in appropriate ℑ -fractional spaces. Our main results is novel and its investigation will enhance the scope of the literature on differential equation of ℑ -Hilfer fractional generalized capillary phenomenon with logarithmic nonlinearity.
ISSN:2238-3603
1807-0302
DOI:10.1007/s40314-024-02863-8