pFind: Privacy-preserving lost object finding in vehicular crowdsensing

Web 3.0 makes crowdsensing services more popular, because of its decentralisation and interoperability. Lost Object Finding (LOF) in vehicular crowdsensing is an emerging paradigm in which vehicles act as detectors to find lost objects for their owners. To enjoy LOF services, object owners need to s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World wide web (Bussum) 2024-09, Vol.27 (5), p.64, Article 64
Hauptverfasser: Sun, Yinggang, Yu, Haining, Li, Xiang, Yang, Yizheng, Yu, Xiangzhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Web 3.0 makes crowdsensing services more popular, because of its decentralisation and interoperability. Lost Object Finding (LOF) in vehicular crowdsensing is an emerging paradigm in which vehicles act as detectors to find lost objects for their owners. To enjoy LOF services, object owners need to submit the tag ID of his lost object, and then detectors need to update their detecting results together with their locations. But the identity and location information are usually sensitive, which can be used to infer the locations of lost objects, or track participant detectors. This raises serious privacy concerns. In this paper, we study the privacy leakages associated with object finding, and propose a privacy-preserving scheme, named pFind, for locating lost objects. This scheme allows owners to retrieve the locations of their lost objects and provides strong privacy protection for the object owners, lost objects, and detectors. In pFind, we design an oblivious object detection protocol by using RBS cryptosystem, which simultaneously provides confidentiality, authentication and integrity for lost objects detection. Meanwhile, we propose a private location retrieval protocol to compute the approximate location of a lost object over encrypted data. We further propose two optimizations for pFind to enhance functionality and performance. Theoretical analysis and experimental evaluations show that pFind is secure, accurate and efficient.
ISSN:1386-145X
1573-1413
DOI:10.1007/s11280-024-01300-4