The Michael-Simon-Sobolev inequality on manifolds for positive symmetric tensor fields
We prove the Michael-Simon-Sobolev inequality for smooth symmetric uniformly positive definite (0, 2)-tensor fields on compact submanifolds with or without boundary in Riemannian manifolds with nonnegative sectional curvature by the Alexandrov-Bakelman-Pucci (ABP) method. It should be a generalizati...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the Michael-Simon-Sobolev inequality for smooth symmetric uniformly positive definite (0, 2)-tensor fields on compact submanifolds with or without boundary in Riemannian manifolds with nonnegative sectional curvature by the Alexandrov-Bakelman-Pucci (ABP) method. It should be a generalization of S. Brendle in [2]. |
---|---|
ISSN: | 2331-8422 |