A note on combinatorial type and splitting invariants of plane curves

Splitting invariants are effective for distinguishing the embedded topology of plane curves. In this note, we introduce a generalization of splitting invariants, called the G-combinatorial type, for plane curves by using the modified plumbing graph defined by Hironaka [14]. We prove that the G-combi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
1. Verfasser: Shirane, Taketo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Splitting invariants are effective for distinguishing the embedded topology of plane curves. In this note, we introduce a generalization of splitting invariants, called the G-combinatorial type, for plane curves by using the modified plumbing graph defined by Hironaka [14]. We prove that the G-combinatorial type is invariant under certain homeomorphisms based on the arguments of Waldhausen [32, 33] and Neumann [22]. Furthermore, we distinguish the embedded topology of quasi-triangular curves by the G-combinatorial type, which are generalization of triangular curves studied in [4].
ISSN:2331-8422