Quantum Information Resources in Spin-1 Heisenberg Dimer Systems

We explore the quantum information resources within bipartite pure and mixed states of the quantum spin-1 Heisenberg dimer system, considering some interesting factors such as the \(l_{1}\)-norm of quantum coherence, relative coherence, entanglement, and steering, influenced by the magnetic field an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Benabdallah, Fadwa, Abd-Rabbou, M Y, Daoud, Mohammed, Haddadi, Saeed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We explore the quantum information resources within bipartite pure and mixed states of the quantum spin-1 Heisenberg dimer system, considering some interesting factors such as the \(l_{1}\)-norm of quantum coherence, relative coherence, entanglement, and steering, influenced by the magnetic field and uniaxial single-ion anisotropy. Through a thorough investigation, we derive the system's density operator at thermal equilibrium and establish a mathematical framework for analyzing quantum correlation metrics. Our results unveil the system's behavior at absolute zero temperature, revealing quantum antiferromagnetic, ferromagnetic, and ferrimagnetic phase transitions governed by the magnetic field and anisotropy parameters. We further observe temperature's role in transitioning the system towards classical states, impacting coherence, entanglement, and steering differently. Notably, we find that increasing the exchange anisotropy parameter can reinforce quantum correlations while adjusting the uniaxial single-ion anisotropy parameter influences the system's quantumness, particularly when positive. Some recommendations to maximize quantum coherence, entanglement, and steering involve temperature reduction, increasing the exchange anisotropy parameter, and carefully managing the magnetic field and uniaxial single-ion anisotropy parameter, highlighting the intricate interplay between these factors in maintaining the system's quantum properties.
ISSN:2331-8422