Sustainable Resource Allocation and Base Station Optimization Using Hybrid Deep Learning Models in 6G Wireless Networks
Researchers are currently exploring the anticipated sixth-generation (6G) wireless communication network, poised to deliver minimal latency, reduced power consumption, extensive coverage, high-level security, cost-effectiveness, and sustainability. Quality of Service (QoS) improvements can be attain...
Gespeichert in:
Veröffentlicht in: | Sustainability 2024-09, Vol.16 (17), p.7253 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Researchers are currently exploring the anticipated sixth-generation (6G) wireless communication network, poised to deliver minimal latency, reduced power consumption, extensive coverage, high-level security, cost-effectiveness, and sustainability. Quality of Service (QoS) improvements can be attained through effective resource management facilitated by Artificial Intelligence (AI) and Machine Learning (ML) techniques. This paper proposes two models for enhancing QoS through efficient and sustainable resource allocation and optimization of base stations. The first model, a Hybrid Quantum Deep Learning approach, incorporates Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs). CNNs handle resource allocation, network reconfiguration, and slice aggregation tasks, while RNNs are employed for functions like load balancing and error detection. The second model introduces a novel neural network named the Base Station Optimizer net. This network includes various parameters as input and output information about the condition of the base station within the network. Node coverage, number of users, node count and user locations, operating frequency, etc., are different parametric inputs considered for evaluation, providing a binary decision (ON or SLEEP) for each base station. A dynamic allocation strategy aims for network lifetime maximization, ensuring sustainable operations and power consumption are minimized across the network by 2 dB. The QoS performance of the Hybrid Quantum Deep Learning model is evaluated for many devices based on slice characteristics and congestion scenarios to attain an impressive overall accuracy of 98%. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su16177253 |