Efficiency-oriented approaches for self-supervised speech representation learning

Self-supervised learning enables the training of large neural models without the need for large, labeled datasets. It has been generating breakthroughs in several fields, including computer vision, natural language processing, biology, and speech. In particular, the state-of-the-art in several speec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of speech technology 2024, Vol.27 (3), p.765-779
Hauptverfasser: Lugo, Luis, Vielzeuf, Valentin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Self-supervised learning enables the training of large neural models without the need for large, labeled datasets. It has been generating breakthroughs in several fields, including computer vision, natural language processing, biology, and speech. In particular, the state-of-the-art in several speech processing applications, such as automatic speech recognition or speaker identification, are models where the latent representation is learned using self-supervised approaches. Several configurations exist in self-supervised learning for speech, including contrastive, predictive, and multilingual approaches. There is, however, a crucial limitation in the majority of existing approaches: their high computational costs. These costs limit the deployment of models, the size of the training dataset, and the number of research groups that can afford research with large self-supervised models. Likewise, we should consider the environmental costs that high energy consumption implies. Efforts in this direction comprise optimization of existing models, neural architecture efficiency, improvements in finetuning for speech processing tasks, and data efficiency. But despite current efforts, more work could be done to address high computational costs in self-supervised representation learning.
ISSN:1381-2416
1572-8110
DOI:10.1007/s10772-024-10121-9