Evaluating ARM and RISC-V Architectures for High-Performance Computing with Docker and Kubernetes

This paper thoroughly assesses the ARM and RISC-V architectures in the context of high-performance computing (HPC). It includes an analysis of Docker and Kubernetes integration. Our study aims to evaluate and compare these systems’ performance, scalability, and practicality in a general context and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-09, Vol.13 (17), p.3494
Hauptverfasser: Dakić, Vedran, Mršić, Leo, Kunić, Zdravko, Đambić, Goran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper thoroughly assesses the ARM and RISC-V architectures in the context of high-performance computing (HPC). It includes an analysis of Docker and Kubernetes integration. Our study aims to evaluate and compare these systems’ performance, scalability, and practicality in a general context and then assess the impact they might have on special use cases, like HPC. ARM-based systems exhibited better performance and seamless integration with Docker and Kubernetes, underscoring their advanced development and effectiveness in managing high-performance computing workloads. On the other hand, despite their open-source architecture, RISC-V platforms presented considerable intricacy and difficulties in working with Kubernetes, which hurt their overall effectiveness and ease of management. The results of our study offer valuable insights into the practical consequences of implementing these architectures for HPC, highlighting ARM’s preparedness and the potential of RISC-V while acknowledging the increased complexity and significant trade-offs involved at this point.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13173494