The number of solutions of a random system of polynomials over a finite field

We study the probability distribution of the number of common zeros of a system of \(m\) random \(n\)-variate polynomials over a finite commutative ring \(R\). We compute the expected number of common zeros of a system of polynomials over \(R\). Then, in the case that \(R\) is a field, under a neces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
1. Verfasser: Jain, Ritik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the probability distribution of the number of common zeros of a system of \(m\) random \(n\)-variate polynomials over a finite commutative ring \(R\). We compute the expected number of common zeros of a system of polynomials over \(R\). Then, in the case that \(R\) is a field, under a necessary-and-sufficient condition on the sample space, we show that the number of common zeros is binomially distributed.
ISSN:2331-8422