The number of solutions of a random system of polynomials over a finite field
We study the probability distribution of the number of common zeros of a system of \(m\) random \(n\)-variate polynomials over a finite commutative ring \(R\). We compute the expected number of common zeros of a system of polynomials over \(R\). Then, in the case that \(R\) is a field, under a neces...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the probability distribution of the number of common zeros of a system of \(m\) random \(n\)-variate polynomials over a finite commutative ring \(R\). We compute the expected number of common zeros of a system of polynomials over \(R\). Then, in the case that \(R\) is a field, under a necessary-and-sufficient condition on the sample space, we show that the number of common zeros is binomially distributed. |
---|---|
ISSN: | 2331-8422 |