Vinogradov's theorem for primes with restricted digits
Let \(g\) be sufficiently large, \(b\in\{0,\ldots,g-1\}\), and \(\mathcal{S}_b\) be the set of integers with no digit equal to \(b\) in their base \(g\) expansion. We prove that every sufficiently large odd integer \(N\) can be written as \(p_1 + p_2 + p_3\) where \(p_i\) are prime and \(p_i\in \mat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(g\) be sufficiently large, \(b\in\{0,\ldots,g-1\}\), and \(\mathcal{S}_b\) be the set of integers with no digit equal to \(b\) in their base \(g\) expansion. We prove that every sufficiently large odd integer \(N\) can be written as \(p_1 + p_2 + p_3\) where \(p_i\) are prime and \(p_i\in \mathcal{S}_b\). |
---|---|
ISSN: | 2331-8422 |