Vinogradov's theorem for primes with restricted digits

Let \(g\) be sufficiently large, \(b\in\{0,\ldots,g-1\}\), and \(\mathcal{S}_b\) be the set of integers with no digit equal to \(b\) in their base \(g\) expansion. We prove that every sufficiently large odd integer \(N\) can be written as \(p_1 + p_2 + p_3\) where \(p_i\) are prime and \(p_i\in \mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Leng, James, Sawhney, Mehtaab
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(g\) be sufficiently large, \(b\in\{0,\ldots,g-1\}\), and \(\mathcal{S}_b\) be the set of integers with no digit equal to \(b\) in their base \(g\) expansion. We prove that every sufficiently large odd integer \(N\) can be written as \(p_1 + p_2 + p_3\) where \(p_i\) are prime and \(p_i\in \mathcal{S}_b\).
ISSN:2331-8422