The impact of primordial black holes on the stellar mass function of ultra-faint dwarf galaxies
ABSTRACT If primordial black holes (PBHs) constitute the dark matter (DM), stars forming in dark-matter dominated environments with low velocity dispersions, such as ultra-faint dwarf galaxies, may capture a black hole at birth. The capture probability is non-negligible for PBHs of masses around 102...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2024-03, Vol.529 (1), p.32-40 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
If primordial black holes (PBHs) constitute the dark matter (DM), stars forming in dark-matter dominated environments with low velocity dispersions, such as ultra-faint dwarf galaxies, may capture a black hole at birth. The capture probability is non-negligible for PBHs of masses around 1020 g, and increases with stellar mass. Moreover, infected stars are turned into virtually invisible black holes on cosmologically short time-scales. Hence, the number of observed massive main-sequence stars in ultra-faint dwarfs should be suppressed if the DM was made of asteroid-mass PBHs. This would impact the measured mass distribution of stars, making it top-light (i.e. depleted in the high-mass range). Using simulated data that mimic the present-day observational power of telescopes, we show that already existing measurements of the mass function of stars in local ultra-faint dwarfs could be used to constrain the fraction of DM composed of PBHs in the – currently unconstrained – mass range of 1019–1021 g. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stae147 |