A family of integrals related to values of the Riemann zeta function

We propose a relation between values of the Riemann zeta function \(\zeta\) and a family of integrals. This results in an integral representation for \(\zeta(2p)\), where \(p\) is a positive integer, and an expression of \(\zeta(2p+1)\) involving one of the above mentioned integrals together with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Kumar, Rahul, Levrie, Paul, Pain, Jean-Christophe, Scharaschkin, Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a relation between values of the Riemann zeta function \(\zeta\) and a family of integrals. This results in an integral representation for \(\zeta(2p)\), where \(p\) is a positive integer, and an expression of \(\zeta(2p+1)\) involving one of the above mentioned integrals together with a harmonic-number sum. Simplification of the latter eventually leads to an integral representation of \(\zeta(2p + 1)\).
ISSN:2331-8422