A family of integrals related to values of the Riemann zeta function
We propose a relation between values of the Riemann zeta function \(\zeta\) and a family of integrals. This results in an integral representation for \(\zeta(2p)\), where \(p\) is a positive integer, and an expression of \(\zeta(2p+1)\) involving one of the above mentioned integrals together with a...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a relation between values of the Riemann zeta function \(\zeta\) and a family of integrals. This results in an integral representation for \(\zeta(2p)\), where \(p\) is a positive integer, and an expression of \(\zeta(2p+1)\) involving one of the above mentioned integrals together with a harmonic-number sum. Simplification of the latter eventually leads to an integral representation of \(\zeta(2p + 1)\). |
---|---|
ISSN: | 2331-8422 |